Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 97(1): 171-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38143354

RESUMO

Using APP/PS1 mice that overproduce amyloid-ß (Aß) peptides, we investigated whether intranasal infection with a neurovirulent clinical strain of herpes simplex virus 1 (HSV-1) before Aß deposition could accelerate or increase Alzheimer's disease-like pathology. After HSV-1 infection, APP/PS1 mice presented a similar disease as wild type animals based on body weight changes, clinical symptoms, and survival rates. The number and volume of Aß plaques, the number of microglia, and the percentages of circulating monocyte subsets were similar in APP/PS1 mice infected or not with HSV-1. Thus, intranasal infection with HSV-1 does not alter Aß pathology in this mouse model.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Camundongos Transgênicos , Peptídeos beta-Amiloides , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Herpes Simples/complicações , Placa Amiloide/patologia , Modelos Animais de Doenças , Presenilina-1/genética
2.
J Neuroinflammation ; 19(1): 81, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387656

RESUMO

BACKGROUND: Microglia participate in the immune response upon central nervous system (CNS) infections. However, the role of these cells during herpes simplex encephalitis (HSE) has not been fully characterized. We sought to identify different microglia/microglia-like cells and describe the potential mechanisms and signaling pathways involved during HSE. METHODS: The transcriptional response of CD11b+ immune cells, including microglia/microglia-like cells, was investigated using single-cell RNA sequencing (scRNA-seq) on cells isolated from the ventral posterolateral nucleus (VPL)-enriched thalamic regions of C57BL/6 N mice intranasally infected with herpes simplex virus-1 (HSV-1) (6 × 105 PFUs/20 µl). We further performed scanning electronic microscopy (SEM) analysis in VPL regions on day 6 post-infection (p.i.) to provide insight into microglial functions. RESULTS: We describe a novel microglia-like transcriptional response associated with a rare cell population (7% of all analyzed cells), named "in transition" microglia/microglia-like cells in HSE. This new microglia-like transcriptional signature, found in the highly infected thalamic regions, was enriched in specific genes (Retnlg, Cxcr2, Il1f9) usually associated with neutrophils. Pathway analysis of this cell-type transcriptome showed increased NLRP3-inflammasome-mediated interleukin IL-1ß production, promoting a pro-inflammatory response. These cells' increased expression of viral transcripts suggests that the distinct "in transition" transcriptome corresponds to the intrinsic antiviral immune signaling of HSV-1-infected microglia/microglia-like cells in the thalamus. In accordance with this phenotype, we observed several TMEM119+/IBA-I+ microglia/microglia-like cells immunostained for HSV-1 in highly infected regions. CONCLUSIONS: A new microglia/microglia-like state may potentially shed light on how microglia could react to HSV-1 infection. Our observations suggest that infected microglia/microglia-like cells contribute to an exacerbated CNS inflammation. Further characterization of this transitory state of the microglia/microglia-like cell transcriptome may allow the development of novel immunomodulatory approaches to improve HSE outcomes by regulating the microglial immune response.


Assuntos
Encefalite por Herpes Simples , Herpesvirus Humano 1 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Transcriptoma , Núcleos Ventrais do Tálamo
3.
Sci Rep ; 11(1): 18688, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548521

RESUMO

Herpes simplex virus 1 (HSV-1) is responsible for herpes simplex virus encephalitis (HSE), associated with a 70% mortality rate in the absence of treatment. Despite intravenous treatment with acyclovir, mortality remains significant, highlighting the need for new anti-herpetic agents. Herein, we describe a novel neurovirulent recombinant HSV-1 (rHSV-1), expressing the fluorescent tdTomato and Gaussia luciferase (Gluc) enzyme, generated by the Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) (CRISPR-Cas9) system. The Gluc activity measured in the cell culture supernatant was correlated (P = 0.0001) with infectious particles, allowing in vitro monitoring of viral replication kinetics. A significant correlation was also found between brain viral titers and Gluc activity in plasma (R2 = 0.8510, P < 0.0001) collected from BALB/c mice infected intranasally with rHSV-1. Furthermore, evaluation of valacyclovir (VACV) treatment of HSE could also be performed by analyzing Gluc activity in mouse plasma samples. Finally, it was also possible to study rHSV-1 dissemination and additionally to estimate brain viral titers by in vivo imaging system (IVIS). The new rHSV-1 with reporter proteins is not only as a powerful tool for in vitro and in vivo antiviral screening, but can also be used for studying different aspects of HSE pathogenesis.


Assuntos
Encefalite por Herpes Simples/fisiopatologia , Herpesvirus Humano 1/isolamento & purificação , Animais , Antivirais/uso terapêutico , Sequência de Bases , Barreira Hematoencefálica , Encéfalo/virologia , Chlorocebus aethiops , Encefalite por Herpes Simples/tratamento farmacológico , Encefalite por Herpes Simples/virologia , Genes Reporter , Genes Virais , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Luminescência , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase Multiplex/métodos , Valaciclovir/uso terapêutico , Células Vero , Carga Viral , Replicação Viral/genética
4.
J Neuroinflammation ; 18(1): 178, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399779

RESUMO

BACKGROUND: Zika virus (ZIKV) has been associated with several neurological complications in adult patients. METHODS: We used a mouse model deficient in TRIF and IPS-1 adaptor proteins, which are involved in type I interferon production, to study the role of microglia during brain infection by ZIKV. Young adult mice were infected intravenously with the contemporary ZIKV strain PRVABC59 (1 × 105 PFUs/100 µL). RESULTS: Infected mice did not present overt clinical signs of the disease nor body weight loss compared with noninfected animals. However, mice exhibited a viremia and a brain viral load that were maximal (1.3 × 105 genome copies/mL and 9.8 × 107 genome copies/g of brain) on days 3 and 7 post-infection (p.i.), respectively. Immunohistochemistry analysis showed that ZIKV antigens were distributed in several regions of the brain, especially the dorsal hippocampus. The number of Iba1+/TMEM119+ microglia remained similar in infected versus noninfected mice, but their cell body and arborization areas significantly increased in the stratum radiatum and stratum lacunosum-moleculare layers of the dorsal hippocampus cornu ammoni (CA)1, indicating a reactive state. Ultrastructural analyses also revealed that microglia displayed increased phagocytic activities and extracellular digestion of degraded elements during infection. Mice pharmacologically depleted in microglia with PLX5622 presented a higher brain viral load compared to untreated group (2.8 × 1010 versus 8.5 × 108 genome copies/g of brain on day 10 p.i.) as well as an increased number of ZIKV antigens labeled with immunogold in the cytoplasm and endoplasmic reticulum of neurons and astrocytes indicating an enhanced viral replication. Furthermore, endosomes of astrocytes contained nanogold particles together with digested materials, suggesting a compensatory phagocytic activity upon microglial depletion. CONCLUSIONS: These results indicate that microglia are involved in the control of ZIKV replication and/or its elimination in the brain. After depletion of microglia, the removal of ZIKV-infected cells by phagocytosis could be partly compensated by astrocytes.


Assuntos
Encéfalo/virologia , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose/fisiologia , Infecção por Zika virus/metabolismo , Animais , Encéfalo/metabolismo , Camundongos , Microglia/virologia , Neurônios/virologia
5.
Microorganisms ; 8(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322333

RESUMO

The prolonged treatment of immunosuppressed (IS) individuals with anti-influenza monotherapies may lead to the emergence of drug-resistant variants. Herein, we evaluated oseltamivir and polymerase inhibitors combinations against influenza A/H3N2 infections in an IS mouse model. Mice were IS with cyclophosphamide and infected with 3 × 103 PFU of a mouse-adapted A/Switzerland/9715293/2013 (H3N2) virus. Forty-eight hours post-infection, the animals started oseltamivir, favipiravir or baloxavir marboxil (BXM) as single or combined therapies for 10 days. Weight losses, survival rates and lung viral titers (LVTs) were determined. The neuraminidase (NA) and polymerase genes from lung viral samples were sequenced. All untreated animals died. Oseltamivir and favipiravir monotherapies only delayed mortality (the mean day to death (MDD) of 21.4 and 24 compared to 11.4 days for those untreated) while a synergistic improvement in survival (80%) and LVT reduction was observed in the oseltamivir/favipiravir group compared to the oseltamivir group. BXM alone or in double/triple combination provided a complete protection and significantly reduced LVTs. Oseltamivir and BXM monotherapies induced the E119V (NA) and I38T (PA) substitutions, respectively, while no resistance mutation was detected with combinations. We found that the multiple dose regimen of BXM alone provided superior benefits compared to oseltamivir and favipiravir monotherapies. Moreover, we suggest the potential for drug combinations to reduce the incidence of resistance.

6.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938766

RESUMO

The role of a signaling pathway through macrophage colony-stimulating factor (MCSF) and its receptor, macrophage colony-stimulating factor 1 receptor (CSF1R), during experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE) was studied by two different approaches. First, we evaluated the effect of stimulation of the MCSF/CSF1R axis before infection. Exogenous MCSF (40 µg/kg of body weight intraperitoneally [i.p.]) was administered once daily to BALB/c mice on days 4 and 2 before intranasal infection with 2,500 PFU of HSV-1. MCSF treatment significantly increased mouse survival compared to saline (50% versus 10%; P = 0.0169). On day 6 postinfection (p.i.), brain viral titers were significantly decreased, whereas beta interferon (IFN-ß) was significantly increased in mice treated with MCSF compared to mice treated with saline. The number of CD68+ (a phagocytosis marker) microglial cells was significantly increased in MCSF-treated mice compared to the saline-treated group. Secondly, we conditionally depleted CSF1R on microglial cells of CSF1R-loxP-CX3CR1-cre/ERT2 mice (in a C57BL/6 background) through induction with tamoxifen. The mice were then infected intranasally with 600,000 PFU of HSV-1. The survival rate of mice depleted of CSF1R (knockout [KO] mice) was significantly lower than that of wild-type (WT) mice (0% versus 67%). Brain viral titers and cytokine/chemokine levels were significantly higher in KO than in WT animals on day 6 p.i. Furthermore, increased infiltration of monocytes into the brains of WT mice was seen on day 6 p.i., but not in KO mice. Our results suggest that microglial cells are essential to control HSE at early stages of the disease and that the MCSF/CSF1R axis could be a therapeutic target to regulate their response to infection.IMPORTANCE Microglia appear to be one of the principal regulators of neuroinflammation in the central nervous system (CNS). An increasing number of studies have demonstrated that the activation of microglia could result in either beneficial or detrimental effects in different CNS disorders. Hence, the role of microglia during herpes simplex virus encephalitis (HSE) has not been fully characterized. Using experimental mouse models, we showed that an early activation of the MCSF/CSF1R axis improved the outcome of the disease, possibly by inducing a proliferation of microglia. In contrast, depletion of microglia before HSV-1 infection worsened the prognosis of HSE. Thus, an early microglial response followed by sustained infiltration of monocytes and T cells into the brain seem to be key components for a better clinical outcome. These data suggest that microglia could be a potential target for immunomodulatory strategies combined with antiviral therapy to better control the outcome of this devastating disease.


Assuntos
Encefalite por Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Microglia/metabolismo , Microglia/virologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Encéfalo/virologia , Sistema Nervoso Central/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Fagocitose , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Carga Viral
7.
Vaccines (Basel) ; 7(4)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671656

RESUMO

Human metapneumovirus (HMPV) is a major pediatric respiratory pathogen with currently no specific treatment or licensed vaccine. Different strategies to prevent this infection have been evaluated, including live-attenuated vaccines (LAV) based on SH and/or G protein deletions. This approach showed promising outcomes but has not been evaluated further using different viral strains. In that regard, we previously showed that different HMPV strains harbor distinct in vitro fusogenic and in vivo pathogenic phenotypes, possibly influencing the selection of vaccine strains. In this study, we investigated the putative contribution of the low conserved SH or G accessory proteins in such strain-dependent phenotypes and generated recombinant wild type (WT) and SH- or G-deleted viruses derived from two different patient-derived HMPV strains, A1/C-85473 and B2/CAN98-75. The ΔSH and ΔG deletions led to different strain-specific phenotypes in both LLC-MK2 cell and reconstituted human airway epithelium models. More interestingly, the ΔG-85473 and especially ΔSH-C-85473 recombinant viruses conferred significant protection against HMPV challenge and induced immunogenicity against a heterologous strain. In conclusion, our results show that the viral genetic backbone should be considered in the design of live-attenuated HMPV vaccines, and that a SH-deleted virus based on the A1/C-85473 HMPV strain could be a promising LAV candidate as it is both attenuated and protective in mice while being efficiently produced in a cell-based system.

8.
PLoS Pathog ; 15(4): e1007689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964929

RESUMO

NOD-like receptor protein 3 (NLRP3) inflammasome activation triggers caspase-1 activation-induced maturation of interleukin (IL)-1ß and IL-18 and therefore is important for the development of the host defense against various RNA viral diseases. However, the implication of this protein complex in human metapneumovirus (HMPV) disease has not been fully studied. Herein, we report that NLRP3 inflammasome plays a detrimental role during HMPV infection because NLRP3 inflammasome inhibition protected mice from mortality and reduced weight loss and inflammation without impacting viral replication. We also demonstrate that NLRP3 inflammasome exerts its deleterious effect via IL-1ß production since we observed reduced mortality, weight loss and inflammation in IL-1ß-deficient (IL-1ß-/-) mice, as compared to wild-type animals during HMPV infection. Moreover, the effect on these evaluated parameters was not different in IL-1ß-/- and wild-type mice treated with an NLRP3 inflammasome inhibitor. The production of IL-1ß was also abrogated in bone marrow derived macrophages deficient for NLRP3. Finally, we show that small hydrophobic protein-deleted recombinant HMPV (HMPV ΔSH) failed to activate caspase-1, which is responsible for IL-1ß cleavage and maturation. Furthermore, HMPV ΔSH-infected mice had less weight loss, showed no mortality and reduced inflammation, as compared to wild-type HMPV-infected mice. Thus, NLRP3 inflammasome activation seems to be triggered by HMPV SH protein in HMPV disease. In summary, once activated by the HMPV SH protein, NLRP3 inflammasome promotes the maturation of IL-1ß, which exacerbates HMPV-induced inflammation. Therefore, the blockade of IL-1ß production by using NLRP3 inflammasome inhibitors might be a novel potential strategy for the therapy and prevention of HMPV infection.


Assuntos
Inflamassomos/imunologia , Inflamação/imunologia , Interleucina-1beta/fisiologia , Metapneumovirus/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Infecções por Paramyxoviridae/imunologia , Proteínas Oncogênicas de Retroviridae/metabolismo , Animais , Feminino , Humanos , Inflamassomos/metabolismo , Inflamação/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Paramyxoviridae/virologia , Proteínas Recombinantes/metabolismo , Proteínas Oncogênicas de Retroviridae/imunologia , Transdução de Sinais , Replicação Viral
9.
J Neurovirol ; 25(3): 372-383, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758810

RESUMO

The cerebral immune response induced by herpes simplex virus (HSV) encephalitis (HSE) was evaluated in susceptible BALB/c and resistant C57BL/6 mice. BALB/c and C57BL/6 (named C57BL/6-high) mice were respectively infected intranasally with 1 × 103 and 5 × 105 plaque-forming units (PFUs) of HSV-1. C57BL/6 mice (named C57BL/6-low) infected with a low inoculum (1 × 103 PFUs) of HSV-1 were tested in parallel. Mice were monitored for weight loss, sickness signs, and survival for 21 days. The viral load, infectious titers, cytokine/chemokine levels, and peripheral leukocyte infiltration were determined in brain homogenates on days 0 (non-infected), 4, 6, and 8 post-infection (p.i.) by qPCR, plaque assay, ELISA/Luminex™, and flow cytometry, respectively. Our results showed that the mortality of BALB/c mice (67%) was higher compared to those of C57BL/6-low (0%; P ≤ 0.01) and C57BL/6-high (20%; P ≤ 0.05) animals. This higher mortality was associated with increased infectious titers and cytokine/chemokine levels in the brains of BALB/c compared to C57BL/6 mice. Recruitment of inflammatory monocytes, dendritic cells, natural killer, and natural killer T cells to the brain was higher in C57BL/6-high compared to BALB/c animals on day 4 p.i. Infiltration of inflammatory monocytes and T cells in the brain of BALB/c mice was seen on day 6 p.i. Our data suggest that a rapid, sustained, and coordinated recruitment of peripheral leukocytes to the brain of C57BL/6-high mice results in an effective control of viral replication and inflammation whereas the delayed infiltration of immune cells in the brain of BALB/c mice was associated with an exacerbated inflammatory response during HSE.


Assuntos
Quimiotaxia de Leucócito/imunologia , Resistência à Doença/imunologia , Suscetibilidade a Doenças/imunologia , Encefalite por Herpes Simples/imunologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...